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BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS ARREST OF
THE ROOT OF A MOVING CANTILEVER BEAM

By ELBEIDGE Z. STOWELL,EDWAZDB. SCHWARTZ,and JOHNC. HOIIBOLT

SUMMARY

A theoretical and ex-perimentalimre~tigationha been -made
of the behan”orof a cantikrer beam in trm.srerse motion what
it~ root is suddenly brought to rest. Eguu4ion~are giren for
determining the siresses, the dej?edmk?, and the accekrations
thatarise in the beamag a red of the impact. T%etheoretical
equutions, which hare been con$rmed experimentally, receal
that, at a ~“ren percent~e of the distancefrom rod to tip, the
bending stressesfor a pafi”aular mode are indeptmdeni of the
length of the beam wlieretu the shear stremes my inrersel~
ox”ththe length.

INTRODUCTION

When an airplane lands, the wrticaI component of the
veIocity is rapidly reduced to zero. In the absence of a
thorough analysis of the stresses tlmt arise from such shocks,
it is customary for engineers to assume that the landing
loads are static and independent of the elastic properties of
the structure. As an initial step in the study of ekskic
structures under shock loads, an investigation has been made
to determine the tied on a simple structure of the sudden
arrest of its motion and the effect of the geometry of the
structure on the stresses that result. The particular case
treated in this report covers the basic problem of the in-
stantmmous arrest of the root of a moving cantilever beam.
The solution of this problem gives the energy consumed iQ
exciting the dif7erent modes of vibration and the stresses,
deflections, and acceIerationa that result throughout the
beam.

This investigation “is based on the usual engineering
beam theory in which the deflections are considered to be the
result of bending alone and shear deflections are neglected.
The theory, as appIied to ordinary beams, gives reasonably
good results as long as the distance between inflection
points is greater than a few times the depth of the beam.
When this theory for beam action is used in -ribration
problems, such as the problem in the present paper, the
results are satisfactory for those modes of vibration for
which the nodes are not too cIose together. This report
summarizes the results of a theoretical solution, given in
the appendi~, and presents an experimental -i-erilication

‘ of these results.
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acceleration of gravity
length of beam
moment of inertia of cross section of beam about

neutraI axis
cross-sectional area of beam

radius of gyration of cross section of beam (r)1;
coordinate alo~~ beam measured from root
distante from neutraI axis of beam to any fiber
time, zero at impact

integers 1, 2, 3, etc., designating a particular
mode of vibration

nth positive root l+cos 8 cosh 6=0
undamped naturaI anguIarfrequency of nth mode,

()radians per second PC~

damped natural angular frequency of nth mode,

radians per second (..,l~) (men

h%l.z
~>1, the “frequency” is defied by

-wJoeity of beam prior to impact
deflection of beam at station z and time t
deflection of beam at station x and time t for

nth mode of vibration
acceleration of beam at station z and time t
acceleration of beam at station x and time t for .

nth mode of vibration
bending stress in beam at station x, distance

from-neutral axis g, and time t
~n(z, y, t) bending stress in beam at station x, distance

from neutral axis y, and time t for nth mode of
tibration

7(2, t] average shear stress over cross section of beam at
station z and time t

7=(Z, t) average shear stres over cross section of beam
at station x and time t for nth mode of
vibration

A= bending+ tress coefficient
B, shear-stress coefllcient
c= deflection coefficient

.5S1



582 REPORT NO. S2S—NATIONAL ADVLSORY COMMKCEE FOR AERONAUTICS

RESULTS AND CONCLUSIONS

TFIEORE’ITCAL

When a cantileva beam uRder uniform translation in
a direction perpendicular to its length has it root instanta-
neously brought to rest, there is excited a theoretically M-
nite number of modes of vibration. With each successive
mode, clamping has an increasing influence upon the fre-
quencies and amplitudes of vibration and, for sufficiently high
mocles, even changes the type of motion from oscillatory to
nonoecillatory motion. In the lower modes,however, clamping
has little effect, and only terms of the fiat order in damp-
ing need to be included in the equations. Ody the equa-
tions applicable to the lower modes, which alone are of
importance in any practical case, are presented in this section
of the paper. For a more complete
see the appendix.

The angular frequencies (2T times
are given by the equation

0=2
(on= pc ~L

treatment of darnping,

the frequencies in cps)

(1)

where 6, has the following vtilues for successive modes of
vibration:

61=1 .876104 05=14.137168
0,=4.694098 &= 17.!278759
9;=7.854757 -
e,= 10.995541 13n=~(2n–1) m,n>6

The energy that the beam possesses before impact is
consumed in exciting the various mod= of vibration and
is distributed among the modes as follows:

I I

This distribution of energy among the different modes of
vibration is presented graphically in figure 1.
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FIGUREI.—l)lahibution of emergyarrrongthe modesof vibration.

All stresses, deflections, and accelcmtions are damped
sinusoidal functions of timo and vary along the lcngl h of
the beam. The bonding strms as(z, y, t) rind k avcrnge
shear stress ?n(z, t), associated with W A mode of vibrn-
tion, are given by the equations

_hAw~
21X

:z~ern(z, y, t)=AB ~ ~ sin Wnt (2)

Al%*~
-3X

~~(z,t)=lln~~ Ee sin tint (3)

The variation of the dimensionless coefficients A. rImlB=
with x/Lis given for ~—l, 2, and 3 in figures 2 and 3. ‘1’hc

1

t

FIGURE ?.–VarfaUom of baudlng-stresswulfcient A. wltb r/L.

highest values of ~, tind B., and hcrwc the highest strcsscs,
occur Qt. the root of the bmm. m~c VdUCS, for thC firstl

six rnocleq are

Mode,n A.at root

I 4

B. at root

[
1.ml 2.140

i .8CS 4.149
a ::4
4 %J
6
6

4.Ml
.281 4.00

I 1

The foregoing values of A, nnd B, at the root me prcscntcd
graphically in figure 4.

The maximum values with respect to time of u,(r, y, t)
and ;n(z, t) associated with the nth mode of vibration, whrn
the efleck of damping are neglected, arc
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u= (2, y)=li. : ; E (4)

7=(2!)=B, :% E (5)

The deflections u*a(z,t) for the nth mode of tibration are
giren by the equation

(6)

The accelerations am(z,t) for the nth mode, -when damping

is sufficiently small, me given by ~

tz=(z,t)= – CJX2WJZ,t) (7)

The variation of the dimensionless coefficient Cmwith x/L is
given for n=l, 2, and 3 in figure 5.

The equations (4) to (7) for stress, deflection, and accelera-
tion give the values associated with the nth mode of vibra-
tion. Since alI modes of vibration occur si.@@aneousIy, the
net results are the superposition of the eflects of all modes.
This superposition gives the following equations:

Mode

F10Fw2~4.-VshIes ot Lwndfng+& mefikient A. and shear+tress c@fEcIent B. at root.

I I 8 1 1 1 I ,
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FIGFRE 5.–V&rfatIonof ~efkct!oncoefllcimt C’. with dL
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.

For bending stress,

(

Xulj
v ~ E A*e-m~ sin w,tu(x, y, t)=; ~

+A~e-%ptsin@+ . . .
)

For average shear stress,

(

til?t
-=

7(z, t)= ~ fE Ble sin 4

+B,~%’sinw$+ . . .)

For deflection,

u L2

(

?@i~
W(Z,t) ‘=;; Cle’~ sin colt

+ C,e*’ sin ti,t+ . . .
)

For acceleration, when damping is sufficiently small,

wL~
a(z, t)=; ;

(
Clalze+sin ult

——
+C2ti2e ~t sin *t+ . . .

)

(8)

(9)

(lo)

(11)

The equation for bending stress. (equation (4)) reveals
that, at a given percentage of the distance from root to tip,

the bending stress for a particular mode is independent of
the length of the beam and depends only on the velocity
before impact, The equation for shear stress (equation (5))
reveals that the shear stresses at any station vary inversely
with the length of the beum. These results are contraqy to
those that might be expected on the basis of experience with
the static behavior of structures. I?or this reason an ex-
perimental investigation was made.

E.XPEEIMENTAL

A circular steel tube of l-inch outside diameter and 0.028-
inch wall thicknms was mounted symmetrically on thb end
of a pendulum to form n pair of cantilever beams. (See
fig. 6.) The penduhun was permitted to start its swing from
a predetermined position and was suddenly brought to rest
at the bottom of its swing against an electromagnet used to
prevent rebound. The effect of length was studied by
reducing- the length of the tube in successive tests, The
bending and shear strains were measured by electrical strain
gages that were mounted on the tube as shown in figure 7.
Each pair of gages was incorporated inti a Wheatstoue
bridge circuit as shown diagrammatically in &ure 8. The
outputs of the bridge systems were fed through a strain-gage

i

1
$?b

,.

*

i

,.
fi

Fmrm O.–llmdulum assembly wcd In lmpmt trot.

FIGURE7.—L@mtIonof stndn gnges on htk

amplifier into a multichamwl oscillogmph that rccordcd tho
strains on moving photographic paper. ThL’ amplitude of
the components of strain due to the modes of higher fre-
quency was reduced, however, kausc of the mspomo chtuwc-
teristics of the osci.llograph. The frcq~lctlcy-rcspor~sccurvo
for the owillograph used k given in figuro 0.

Typi@ records for tubes of Lwo lmgths tire S11OWUi.n
figure 10. Inspection of the record for the cantilever beam
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26% inches long shows the superposition of the second and
third modes upon the fit mode. The record shows that-,in
the case of the bending strain, the contribution of the second
mode is small; vrhereas~in the case of the shear strain, the
contribution of the second mode is large. This observation
con6rms qudit ati~ely the theoreticrdresultsshown in figure 4.
The same effect is not shown, howe~er, in the record for
the cantilever beam 11%inches long because of the combined
action of damping and reduced response of the osciJlograph
to the higher frequencies associated with this short length of
tube.

The bending stresses computed by use of equation (8), in
which only the first three modes are used, are given by the
solid-line curve of @e 11 for the cantilever beam 26%inches
long. Comparison of this curve with the record obtained
during the fit Mcycle of the fit mode (see @g. 10) shows
good agreement as regards the wave shape.

Because of the damping present in the tube and the
response charactaistics of the osdograph, the only com-
ponent of vibration that could be satisfactorily recorded for
all lengths of cantilever tube was the fundamental or fit
mode. The quantitative results of the tests consequently
were based upon this mode of vibration. This procedure is
sound because the effects of the various hmmoniw are
independent of one another. In the analysis of the results,
the data had to be corrected for the imfluenceof the magget.

zB&in

Lef arm

4J!-Lh7
ff~hf a-m
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(8) CrmtUemrlength, ‘iI3% Inches.
(b.) Cantfker length, 11* tnek.

PIWEE 10.—Portfomsnf typical reewde obtufned for two Mffwent lengths M trrhe.

I Tofd--u

I r , 1 t 1 t 1 , 1 ,

0 .005 .Ofcl
?7me, sec

EIWU 11.—TheorMd wave form for extreme-fdw bending stress at root obtatned Crom
the first three modes of vfbra(ion. SteeI tube, I-tneh outside diameter vMI fbldm~
0.E3 Inch; length, ~ tmchen.
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The observed frequencies are compared with tho frcqucn-
cie9 computed from equation (1) for the first modo in tho
following table:

1
—

--1-1-
Fr~ucncy

- (M Ot))jdd co&#&l

.

4

17.b 17.b
: 27.Q !2%2
z? 621 63.2
1 131 127
u 272 m

[ 1 I .-

The experimental values of extreme-fhx bunding st rcssce
and the s~ear stressesd-. the root, for tlw funciamcmtnimode,
are plotted in figure 12. In figure 12 arc also shown @
corresponding theoreticfd curves of equation (4) for bending
and equation (5) for shear with n tnken as 1. It is oh-
served @tit the experimental points follow the trend of and
lie close to the theoretical curves.

.

*

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

lVATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLET FIELD, VA., September97 .19~~.



APPENDIX

THEORETICAL DERIVATION

General analysis.-Consider a beam of uniform cross sec-
tion in equilibrium. If a portion of the beam is suddenly
disturbed, as by a shock, in a direction perpendicular to its
length, the beam is set into damped bending osciIIatione.
The equation of motion for these bending oscillations is given
by the differential equation (reference 1)

(Al)

The damping term kP2~t is derived on the assumption I
that the Longitudinal damping force per tit area at any
point on the cross section of the beam is proportional to the
rate of change of longitudinal strain at that point. (See
reference 2.) This type of force is analogoue to ordinary
viscous drag, in which the tangential force per unit area is
proportional to the rate of change of shear strain. Ti%.hthe

use of the notation Cz E9=T equation (Al) can be -written

(A2)

In accordance with the Heaviside operational methods
(reference 3), equation (J&2)may be reduced to an ordinary

differential equation of the fourth order by writing p=%

thus,

(l+AE++=” (M)

The general solution of equation (M) is I

where

The coefhcients P, Q, R, and S are to be determined from
the boundary conditions. The case under consideration is
that of a cantilever moving with uniform velocity v and
having its base brought instantaneously to rat. The
boundary conditions for this case are

bw()z .4

=p (W)=.o=v—vl

The veloc$ityof the root as given by the first boundary con-
dition is represent graphically in figure 13(a). The rule9
of the Hea-riside calctius, however, have been devised for
a disturbance, called the unit function 1, shovin in figure
13(b). By the principle of superposition, the velocity func-
tion shown in figure 13(a) may be considered as a super-
position of those show-n in figures 13(c) and 13(d). The
velocity therefore consists of a comtant velocity o (*. 13(c))
added to the solution of the problem obtained by the Heavi-
side expansion theorem for the disturbance shown in figure
13(d). On the basis of this procedure, the fit boundary

Hdw
d t .7.-.0

(4 v-d
o I ti—

(b]
VI

. . 0

(c}
v

0

(d)
0

-#l

[
Fmufm 13–Gmphicrepres2ntaUonofvarbmsvelooitgfundfons.
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condition may be written

aw()-a ..~=p(’zv).~= –d

With the application of the boundary conditions to equation (A4), the operational form of the solution for tho velocity
(that induced by the disturbance) is found to be

—#l
w=2(l+cosh e cm 0 [(l+cos d cosh 6) (cosh 8;+COS8~~

(+sin o sinh o cosh 6 ~–cos d
) (

~ + (sinh o cos 8 +cosh 6 sin O) sin 6 ;-sinh 6 ~ )]

Interpretation of this operational expression and addition of the constant velocity o gives for the total velocity

(A5)

(A6)

Where

I!?m nth positive root of 1+ cos 6 cosh 6=0

en~
W.=pc ~ ~undamped natural angu~ar‘frequency of nth mode, radians~sec

w=l——Wn /\
~ }*;; damped natural angular frequency of nth mode, radians~sec

() ( .)sin enSinh e, Coeh e. ;—COS $.; ..(. )_– (coah 8=SirLtJ~+Sinh6.cosOJ sinh t?m~-sin t9n~
F en; = 49.(Cosh 6. Sh”On—s&h6; Cos6;)

—

Integration of equation (A6) with respect to the
the condition (w) ‘..= Ogives for the deflection

time with

The contribution of the nth mode to the defection is

When ‘~>1, equation (A8) maybe put in the form

VL2 -
~til

W.(X, t)=; ~ (?. e=teinhu,’tl

&

(A9)
–1

where now

W’=”’’J%=
.—

I The form indicated by equation (A8), where ~~ <1, is

characteristic of the lower modes and reprceents chunpcd
oscillatory motion. The form indicated by equation (A9), -

~bere ‘$!>1 (damping greater than Criticnl),ischaracteristic

of the higher modes and represents subsidcnco motion.
From equation (A6) for velocity tmd cquat.ion (A7) for

deflection, the complete behavior of the cantilcvcr m~y bc
determined. The quant.itica of intmcat arc the bending
stresses, the shear stresses, and to somo extent the accclcr~
tions. When damping is prwent, the equations representing
the contribution of the ~th mode to theec quantities may be
given in t~e two formsindicated by equations (A8) and (A9).
In subsequent equations, however, only tho form indicated
by equation (A8) is given bewmsc it is chnractcristic of ihc
modes that are of practical importtmcc.

Bending stresses.— The bending stresses U(Z,y, t) at any
fiber distance y from the neutral axis are

u (X,y, t)=Ej ~
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where

( )sin 6. Sinh emCosh em;+COS 8.; (–(cosht?,sindm+ sinhdmcos(?z) sinh &~+Sin 6.;

A,=2 )
8. (Cosh e= sin en—sinh 8=Cos6.)

The bending stress due to only the nth mode is

I

Shear stresses.—The average shear Are= over the cross section ? (x, t) is

=E:@jBa 1

= F%% ’+ts’u”” “

where

(
sin 19zsinh 0= sinh f3=&n 8. ~

) (
– (Coshe=sin em+sinhf?=Cos8=) Coahe=;+COS tl=;

Bm=2 )
COSh em ti e=—titi 8. cos 8.

The average shear stress due to only the nth mode is

Accelerations.-From equation (A6), with the aid of the relation

pi’(t) l= F(o)pl+.F’(t)1

,.

()With the aid of the orthogonal properties of the functions F 8. ~
.

()
it is possible to show that the quantity 2fl~F t?%~ —1

reduces to zero when O<; S 1.
()

At ~~0, the quantity 2~lF 9*~ equals zero, and ordy the term –vpl remains.

This term indicates that at t =0 an irdinite acceleration of zero, duration esists at the root.
The acceleration due to only the nth mode k

Comparison with the expression for wm(z,t) (equation (A@) REFERENCES
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